

Clinical and pathophysiological overview of autosomal dominant spinocerebellar ataxias

Franco Taroni

Division of Biochemistry and Genetics IRCCS Istituto Nazionale Neurologico "Carlo Besta" Milan, Italy

SCAs

- 27 mapped loci (including DRPLA)
- 15 disease genes (probably) identified
- 7 SCAs (1-2-3-6-7-17 and DRPLA) associated with a CAG triplet repeats (-> polyglutamine diseases)
- 3 SCAs (8-10-12) associated with expansions in non-coding regions
- 5 SCAs (4, 5, 13, 14, 27) associated with missense mutations or nucleotide changes in regulatory regions

Disease	Locus	Gene - Mutation	Disease	Locus	Gene - Mutation
SCA1	6p23	Ataxin1-CAG exp.	SCA16	8q22.1-q24.1	1 Japanese fam.
SCA2	12q24	Ataxin2-CAG exp.	SCA17	6q27	TBP-CAG exp.
SCA3, MJD	14q24,3-q31	Ataxin3- CAG exp.	SCA18	7q22-q32	1 Irish fam.
SCA4	16q22,1	Puratrophin-1 (5'	SCA19	1p21-q21	1 Dutch fam.
SCA5	11p11-q11	UTR) Spectrin	SCA20	11p13-q11	1 Anglo-Celtic
SCA6	19p13	CACNL1A4-CAG exp.	SCA21	7p21.3-p15.1	1 French fam.
SCA7	3p21,1-p12	Ataxin7-CAG exp.	SCA22	1p21-q23	1 Chinese fam.
SCA8	13q21	CTG exp. (3'UTR)	SCA23	20p13-12.3	1 Dutch fam.
	Not assigned		SCA24	reserved	
SCA10	22q13	Ataxin10-ATTCTexp.(int 9)	SCA25	2p15-21	1 French fam.
SCA11	15q14-q21,3	1 UK fam.	SCA26	19p13.3	1 Norwegian fam.
SCA12	5q31-q33	PPP2R2B-CAG exp.(5UTR)	SCA27	13q34	FGF14
SCA13	19q13.3-q13.4	KCNC3	56428	18p11,22-q11,2	masense mut.
SCA14	19q13.4qter	PRKCG (missense mut.)			
SCA15	3p24,2-pter	Australian and Japanese fam.	DRPLA	12p13	Atrophin1- CAG exp

Neurodegeneration : a polyQ-only hypothesis

• The timing and the spreading of neurodegeneration in DRPLA, SCA1-3, SCA7, depend on the length of the expanded CAG repeat, Zoghbi 2001

 Cellular and trangenic animal models expressing different long poly-Q domains show neurodegeneration, Rubinsztein 2002

 A large CAG expansion ectopically expressed in *HPRT gene* causes intranuclear inclusions and lateonset neurodegeneration in mice, Ordway 1997

New data cast doubts on the polyQ-only hypothesis

• Wild-type and mutant alleles are both abundantly transcribed and translated in many different tissues and organs, yet neuropathology is restricted to specific neural subtypes

a role for the cellular enviroment

the protein context

Distinct phenotypes depend on the intrinsic properties of each mutant protein leading to specific protein-protein interactions in different cellular compartments which drive the neuropathology and the clinical phenotype

the protein context

- When expressed in axoplasm Q78 ataxin-3 blocks fast axonal transport in *Drosophila* larvae inducing the formation of aggregates (axonal blockages)
- When expressed in the nucleus Q78 ataxin-3 induces apoptotic neuronal death
- Gunawardena et al, Neuron 2003; 40:25-40

ESCA					
Disease	Gene product	Main clinical features			
SCA1	ataxin-1	Ataxia, spasticity, ophthalmoparesis, slow saccades, axonal polyneuropathy, cognitive impairment			
SCA2	ataxin-2	Ataxia, extrapyramidal symptoms, spasticity, ophthalmoparesis, slow saccades, axonal polyneuropathy			
SCA3	ataxin-3	Ataxia, parkinsonism, extrapyramidal features, spasticity (severe), ophthalmoparesis, axonal polyneuropathy			
SCA6	CACNA1A	Prominent cerebellar features (ataxia, dysarthria, nystagmus, tremor)			
SCA7	ataxin-7	Ataxia, retinal degeneration, ophthalmoplegia, large anticipation			
SCA17	TATA-binding protein	Ataxia, psychosis and behavioural changes, dystonia, parkinsonism, mental deterioration			
DRPLA	atrophin-1	Myoclonus epilepsy, ataxia, chorea, dementia, rigidity			
	Nat	Rev Neurosci 2004;5: 641-655			

the protein context

AXH domain in ataxin-1 causes protein dimerization and interactions with GF1-Senseless proteins... thus decreasing GF1-Senseless-dependent transcription.... a pathogenic event independent from the poly-Q stretch

Tsuda et al, Cell 2005

State of the Art?

The poly-Q stretch and its protein context drive distinct multifaceted pathological processes which induce preferential pathology in specific neural subsets according to unique protein-protein interactions

gain-of-function mechanisms drive the start of pathology, yet loss of cellular pathways, i.e. transcriptional regulation, proteasome function, mitochondrial function, axonal transport might play a role in disease Nat Rev Neurosci 2004; 5: 641-655

transcriptional activity

TBP , Androgen Receptor, huntingtin, ataxin-1, ataxin-3, ataxin-7, atrophin-1, are directly or indirectly involved in transcriptional regulation

Defective/deranged transcription might act as the final effector of the dominant "toxic gain of function", or it might contribute to cell death throughout "loss of function" mechanisms

What ultimate effects of mutant proteins?

The regional specificity of neuropathology might not be a function of where polyQ proteins are found but rather of the total set of genes whose transcription is altered by mutant protein(s) doi:10.1093/brain/awh651

Brain (2006), 129, 235-242

SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2

Claudia Cagnoli,^{1,4} Caterina Mariotti,^{2,4} Franco Taroni,² Marco Seri,⁴ Alessandro Brussino,¹ Chiara Michielotto,¹ Marina Grisoli,² Daniela Di Bella,² Nicola Migone,¹ Cinzia Gellera,² Stefano Di Donato^{2,4} and Alfredo Brusco^{1,4}

¹Dipartimento di Genetica Biologia e Biochimica, Università degli Studi di Torino and S.C. Genetica Medica, Ospedale San Giovanni Battista di Torino, Torino, ¹UO Biochimica e Genetica and ¹UO Neuroradiologia, Istituto Nazionale Neurologico Carlo Besta, Milano and ¹UO Genetica Medica, Università degli Studi di Bologna, Bologna, Italy

Correspondence to: Stefano Di Donato, MD, UO Biochimica e Genetica, Istituto Nazionale Neurologico Carlo Besta, via Celoria, 11-20133 Milano, Italy

Clinical Features

- Juvenile onset: mean 19.5 years (range 12-36)
- No anticipation
- · Slow progression
- Onset: Gait ataxia and unsteadiness, plus dysartria
- · Gaze-evoked nistagmus, slow saccades
- 6/11 patiens had ophtalmoparesis, ptosis was present in 5
- Brisk DTR and Babinski sign
- No sensory impairment

